

 [image: https://travis-ci.org/datasnakes/OrthoEvolution.svg?branch=master]
 [https://travis-ci.org/datasnakes/OrthoEvolution][image: https://api.codacy.com/project/badge/Grade/25062944794a4d14b5cab274a885ac27]
 [https://www.codacy.com/app/datasnakes/OrthoEvolution?utm_source=github.com&utm_medium=referral&utm_content=datasnakes/OrthoEvolution&utm_campaign=Badge_Grade][image: https://badges.gitter.im/gitterHQ/gitter.png]
 [https://gitter.im/datasnakes/Lobby][image: https://badge.fury.io/py/OrthoEvolution.svg]
 [https://badge.fury.io/py/OrthoEvolution][image: https://readthedocs.org/projects/datasnakes-scripts/badge/?version=master]
 [http://datasnakes-scripts.readthedocs.io/en/master/]
OrthoEvolution

An easy to use and comprehensive python package which aids in the analysis and
visualization of comparative evolutionary genetics related projects. More specifically, this
project is focused on the inference of orthologs using NCBI’s blast, various sequence alignment strategies,
and phylogenetics analyses including PAML, PhyML, ete3, and more tools.

Ultimately, the goal of this project is to create a reusable pipeline for the
inference of orthologs in order to ensure reproducibility of data as well as improve
the management and analysis of (what can be) large datasets. The Cookies, Manager, Pipeline,
and Tools modules act as a framework for our workflow, while the Orthologs
module provides access to specific functions for our various ortholog inference projects.

View our read the docs [http://datasnakes-scripts.readthedocs.io/en/master/] and feel free to also
read this related paper [https://www.frontiersin.org/articles/10.3389/fnhum.2014.00283/full] to gain
more insight into this project/python package.

Overview

Installation

View the below methiods for installing this package.

PyPi

pip install ortho-evol

GitHub

	Download the zip file and unzip it or git clone https://github.com/datasnakes/OrthoEvolution.git

	cd OrthoEvolution

	pip install .

Development Code

WARNING : This code is actively under development and may not be reliable. Please create an issue [https://github.com/datasnakes/OrthoEvolution/issues] for questions about development.

	Download the zip file and unzip it or git clone -b dev-master https://github.com/datasnakes/OrthoEvolution.git

	cd OrthoEvolution

	pip install .

Examples

Check out this tutorial [https://github.com/datasnakes/OrthoEvolution/wiki/Tutorial] in our Wiki Docs.

import OrthoEvol

Tests

To run tests, type nosetests Tests/ in the OrthoEvolution directory.

Contributors

This package was created by the Datasnakes.

	Rob Gilmore | Github: @grabear [https://github.com/grabear] |
✉

	Shaurita Hutchins | Github:
@sdhutchins [https://github.com/sdhutchins] |
✉

If you would like to contribute to this package, install the package in development mode,
and check out our contributing guidelines [https://github.com/datasnakes/OrthoEvolution/blob/master/CONTRIBUTING.rst].

Citations

We’re so thankful to have a resource such as
Biopython [http://biopython.org/wiki/Biopython]. They inspired this
package.

Cock, P.J.A. et al. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics 2009
Jun 1; 25(11) 1422-3 http://dx.doi.org/10.1093/bioinformatics/btp163
pmid:19304878

License

MIT [https://github.com/datasnakes/OrthoEvolution/blob/master/LICENSE]

Contents

	Tutorial
	Using the Cookies module
	Overview

	Examples

	Using the Manager module
	Overview

	Future Direction

	Examples

	Using the Orthologs Module
	Overview

	Examples

	Using the Pipeline module
	Examples

	Using the Tools module
	Overview

	Examples

	Cookies Documentation
	Examples
	Simple Implementation

	Manager Documentation
	Why a manager?

	Examples
	Utilizing DatabaseManagement to download databases

	Notes

	Orthologs Documentation
	Usage & Examples

	❗ Software Dependencies

	Using install.sh on Debian/Ubuntu:

	Pipeline Documentation
	Examples
	Running a Blast Pipeline

	❗ Software Dependencies

	Tools Documentation
	Examples
	Download NCBI databases with our NCBI FTP Client

	List all subdirectories in a NCBI FTP Path

	Utilize multiprocessing to speed up your code

	Integrate logging in a simple and quick way

	Additional Documentation

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Datasnakes-Scripts has been built with Python 3.5 (and up) as a
multi-faceted package and pipeline framework for comparative genetics in
order to infer orthologous genes.

Currently, this python package is comprised of 5 major modules:

	Cookies Module - Project structure
creation using cookiecutter.

	Manager Module - Configuration
management as well project deployment.

	Orthologs Module - Tools for
comparative genetics analysis including alignment analysis and
phylogenetics.

	Pipeline Module - Various
preconfigured pipelines to be used in orthology inference.

	Tools Module - Utilities that aid in
ftp downloading, server communication, and reusable everyday
functions

When used together, these 4 modules offer a cohesive environment for
easily creating, managing, and deploying a bioinformatics pipeline for
orthologous genes/species. In the future these tools will also be
accessible from the command line and from a web application.

READMEs are provided in each module’s directory, but we’ve compiled a
mini tutorial here that can inform users on how to use these modules.

Using the Cookies module

Overview

The Cookies module acts as a repository for custom
cookiecutter [https://github.com/audreyr/cookiecutter] templates.

Each “CookBook” allows us to quickly create and deploy different
projects with various directory structures. They are meant to help
organize projects and data in a standardized way. This module is used
almost extensively by the Manager module.

In the context of the Manager module the CookBook class is used to
deploy an entire repository geared towards developing a web-page using
Flask and R-Shiny. Cookies can also be used to create standalone
projects that don’t require an entire repository.

	Templates used when creating a full repository:

	Cookies/new_repository

	Cookies/new_user

	Cookies/new_project

	Cookies/new_research

	Cookies/new_database (for NCBI, proprietary, etc. databases)

	Cookies/new_app (for
R-Shiny [https://github.com/grabear/awesome-rshiny] applications)

	Cookies/new_website (for Flask [http://flask.pocoo.org/]
applications)

	Template for standalone projects

	Cookies/new_basic_project

Examples

from Datasnakes.Cookies import Oven
from pathlib import Path
import os

Create the names used.
home = os.getcwd()
repo = "Development"
user = "RAG"
project = "Ortholog"
research = "GPCR"
research_type = "Comparative Genetics"
Create the paths used
repo_path = Path(home) / Path(repo)
user_path = repo_path / Path('users')
project_path = user_path / Path(user) / Path('projects')
research_path = project_path / Path(project)

Initialize the Oven object to create a full repository
Full_Kitchen = Oven(repo=repo, user=user, project=project, basic_project=False, output_dir=home)
Create the new project
Full_Kitchen.bake_the_repo()
Full_Kitchen.bake_the_user(cookie_jar=user_path)
Full_Kitchen.bake_the_project(cookie_jar=project_path)
Full_Kitchen.bake_the_research(research=research, research_type=research_type, cookie_jar=research_path)

Initialize the Oven object to setup a basic project
Basic_Kitchen = Oven(project=project, basic_project=True, output_dir=home)
Create the new project
Basic_Kitchen.bake_the_project()

Using the Manager module

Overview

The Manager module uses the CookBook class in order to deploy a
bioinformatics repository with an organized directory structure based on
specific users and the projects that they create. Pipeline customization
and configuration will also be possible through YAML files.

Future Direction

First, a database_management class for dealing with the various
databases (NCBI, BioSQL, etc.) will be developed. Then the Management
class will become responsible for functioning alongside Flask in order
to create a web interface. The web interface will give each user access
to the Tools and Orthologs modules as well as data generated by the
pipeline functionality.

Examples

Manager classes can be used explicitly, or...
from Datasnakes.Manager.management import Management
from Datasnakes.Manager.management import RepoManagement
from Datasnakes.Manager.management import UserManagement
from Datasnakes.Manager.management import WebsiteManagement
from Datasnakes.Manager.management import ProjectManagement

...they can be use implicitly through the main pipeline class.
from Datasnakes.Manager.data_management import DataMana

Explicit Usage

from Datasnakes.Manager.management import ProjectManagement
Use the flags to create a new repository/user/project/research directory system
pm = ProjectManagement(repo="repository1", user='user1', project='project1', research='research1',
 research_type='comparative_genetics', new_repo=True, new_user=True, new_project=True, new_research=True)
Access the path variables
print(pm.research_path)
print(pm.research)
print(pm.Pantry.research_cookie)

Implicit Usage

from Datasnakes.Manager.data_management import DataMana
Use a prebuilt configuration file in Manager/config/
start a *new* project automatically
This builds everything and then starts the pipeline
import os
pipeline = DataMana(pipeline='Ortho_CDS_1', project_path=os.getcwd(), start=True, new=True)

Using the Orthologs Module

Overview

The Orthologs module is the central data processing unit of our package.
Any published data will be generated using these submodules.

The sub modules are used for BLASTing NCBI’s refseq database to discover
orthologous genes, parsing and analyzing BLASTn data, generating GenBank
files for the orthologs, generating sequence data for the orthologs,
aligning the orthologous sequences for each gene, generating
phylogenetic trees for each gene, and doing phylogenetic analysis for
each gene.

Examples

from Datasnakes.Manager.management import ProjectManagement
from Datasnakes.Orthologs.Blast.blastn_comparative_genetics import OrthoBlastN
from Datasnakes.Orthologs.GenBank.genbank import GenBank
from Datasnakes.Orthologs.Align.msa import MultipleSequenceAlignment as MSA

In a real situation a dictionary configuration from YAML files will be used
However a dictionary can be manually set up by the user within the script
See the config files in Manager/config or use data_management.py as an example
management_cfg = mlast_cfg = genbank_cfg = alignment_cfg = {}

Initialize the Project Manager
proj_mana = ProjectManagement(**management_cfg)

Initialize the BLAST tool
Compose this class with the Project Manager
myblast = OrthoBlastN(proj_mana=proj_mana, **management_cfg, **blast_cfg)
myblast.blast_config(myblast.blast_human, 'Homo_sapiens', auto_start=True)

Initialize the GenBank parser
Compose this class with the BLAST tool
Implicitly uses the Project Manager as well
genbank = GenBank(blast=blast, **management_cfg, **genbank_cfg)
Use the Blast tool data to get the desired GenBank files
genbank.blast2_gbk_files(myblast.org_list, myblast.gene_dict)

Initialize the Aligner
Compose this class with the GenBank parser
Implicitly uses the Project Manager and the BLAST tool as well
al = MSA(genbank=genbank, **management_cfg, **alignment_cfg)
al.align(alignment_config['kwargs']) # Underdeveloped

Using the Pipeline module

The pipeline module integrates the python package luigi with our
package to create a pipeline that is accessible via the command-line and
can be utilized with a qsub/pbs job scheduling system.

Examples

Using the Tools module

The tools module is a grouping of utilities used by our package. While
they could have be stored in each modules util.py file, they were used
and developed on a global scale, and hence required their own module.

Overview

Some of the tools/classes in the tools module are:

	NcbiFTPClient - provides functions to easily download ncbi
databases/files and update them.

	LogIt - A wrapper around logzero for easy logging to the screen
or a file.

	Multiprocess - A simple and effective class that allows the input
of a function to map to a user’s list in order to take advantage of
parallel computing.

	SGEJob - A class to aid in submission of a job via qsub on a
cluster.

	Qstat - A class that parses the output of qstat to return job
information. It also waits on job completion.

	ZipUtils -

	Slackify -

	MyGene -

Can I integrate these tools with each other and with orther modules
including my own? YES! We’ll provide some examples below!

Examples

Import a tools module
from Datasnakes.Tools import Slackify

Slack takes a config file thats already set up
slack = Slackify(slackconfig='path/to/slackconfig.cfg')

Message a channel and link to a user.

message_to_channel = 'Hey, <@username>. This is an update for the current script.'
slack.send_msg(channel='channelname', message=message_to_channel)

For more information, view the slackify
readme [https://github.com/datasnakes/Datasnakes-Scripts/tree/master/Datasnakes/Tools/slackify/README.md].

Cookies Documentation

For this project/package, we recommend using cookiecutter (along with
Flask) to set up your directory if you intend to create a web
app/interface for your project.

Cookies makes it very easy to do this.

Learn more about the
cookiecutter [https://github.com/audreyr/cookiecutter] package.

Examples

The Manager
module [https://github.com/datasnakes/OrthoEvolution/tree/master/OrthoEvol/Manager]
uses the CookieRecipes and Oven classes as a primary means of
functioning.

Simple Implementation

from OrthoEvol.Cookies import Oven

Kitchen = Oven(repo="repo", user="user", project="project", output_dir="project_path")
Pantry = Kitchen.Ingredients
Kitchen.bake_the_*()

Manager Documentation

The classes and functions in this module have been designed to help
manage existing and new projects using the Cookies module as well as the
different utilities found in the Tools module.

Why a manager?

This module is intended to mesh with a Flask user interface. * Whenever
a new website is made the RepoManagement and WebManagement classes are
used. * Whenever a new user is created in the Flask webpage, the
UserManagement class is used. * Whenever an existing user creates a new
project, the ProjectManagement class is used.

However, this module does not have to be used to create a Flask webpage.
The full repository can be used for higher level organization, or
standalone projects can be made using the ProjectManagements
basic_project flag.

The DataManagement class helps to tie everything together into a
pipeline.

Examples

Beware that this is under heavy development. ### Utilizing
DataManagement to run a pipeline

import os
from OrthoEvol.Manager import DataManagement

DataManagement(pipeline="Ortho_CDS_1", start=True, new=True)

Utilizing DatabaseManagement to download databases

Notes

Please view our BioSQL
documentation [https://github.com/datasnakes/OrthoEvolution/tree/master/OrthoEvol/Manager/BioSQL/README.md]
and view some of the static/config related
files [https://github.com/datasnakes/OrthoEvolution/tree/master/OrthoEvol/Manager/config/].

Orthologs Documentation

This top level module includes submodules such as
Align [https://github.com/datasnakes/OrthoEvolution/blob/master/OrthoEvol/Orthologs/Align/README.md]
(for aligning multi fasta files),
Phylogenetics [https://github.com/datasnakes/OrthoEvolution/blob/master/OrthoEvol/Orthologs/Phylogenetics/README.md]
(for analyzing multiple sequence alignments), `BioSQL <>`__ (for
database creation),
Blast [https://github.com/datasnakes/OrthoEvolution/tree/master/OrthoEvol/Orthologs/Blast]
(includes tools for using NCBI’s blastn command line), and
Genbank [https://github.com/datasnakes/OrthoEvolution/blob/master/OrthoEvol/Orthologs/Genbank/README.md].
(for tools to extract features from genbank files).

Usage & Examples

These classes are optimized to be used together (very little work to do
that), but can also be used as standalone classes/methods.

This is a simple example of using all of the Orthologs submodules
together.

from OrthoEvol.Orthologs.Blast import OrthoBlastN
from OrthoEvol.Orthologs.Align import ClustalO
from OrthoEvol.Orthologs.Phlogenetics import ETE3PAML

❗ Software Dependencies

Ensure that the following software is installed and in your path: -
Clustal omega - NCBI Blast+ 2.6.0 or greater - PAML - PhyML - Phylip -
IQTREE - Mafft - Prank - Clustalw - Guidance2 - Pal2Nal

If you are a sudo user, you may use the script we’ve provided,
install.sh [https://github.com/datasnakes/OrthoEvolution/blob/master/OrthoEvol/Orthologs/install.sh].

Using install.sh on Debian/Ubuntu:

Change to the directory of the file.
cd
chmod +x install.sh
./sudo-install.sh

Pipeline Documentation

The Pipeline module is designed to provide the user with easily callable
and command line usable pipelines that allow orthology inference to be
completed in a parallel fashion.

Soon, there will be many preconfigured pipelines that you can run if you
are using a cluster (specifically one that uses pbspro or sun grid
engine).

Examples

Running a Blast Pipeline

❗ Software Dependencies

Ensure that you have at least pbs version 14.1.0

Tools Documentation

The Tools module is a collection of often used classes or functions that
either enhance our other modules and create reusable functions to be
used in various modules.

We’ve incorporated tools for sge tools for use with pbs, a pandoc script
and class for converting docx files to markdown formats, multiprocessing
in multiprocess, and a ftp module that aids in downloading files from
NCBI’s ftp repository.

Examples

Take a look at the examples below to get an idea of how to incorporate
these tools in your project and how we use these tools in our project.

Download NCBI databases with our NCBI FTP Client

from OrthoEvol.Tools.ftp import NcbiFTPClient

ncbiftp = NcbiFTPClient(email='somebody@gmail.com')
ncbiftp.getblastdb(database_name='refseq_rna')

List all subdirectories in a NCBI FTP Path

ncbiftp.listdirectories(path='/blast/db/')
Out[54]: ['FASTA', 'cloud']

Utilize multiprocessing to speed up your code

from OrthoEvol.Tools import Multiprocess

def printwords(word):
 print(word)

words = ['bae', 'luh', 'cuh']

if __name__ == '__main__':
 mp = Multiprocess()
 mp.map2function(printwords, words)

Integrate logging in a simple and quick way

from OrthoEvol.Tools import LogIt

Set up your loggers
logit = LogIt()

Log to one file
logfile = 'test.log'

test1 = logit.default('test1 log', logfile)

Start logging
test1.info('hi')

Shutdown logging without deleting the logfile
logit.shutdown()

Additional Documentation

Check the specific modules for more detailed readmes and examples of
using the tools with this package.

Index

Phylogenetics Documentation

This documentation will provide information and guidelines about how we
use the Phylogenetics modules related to this package.

Overview

Phylogenetics is best defined as the study of evolutionary relationships
among biological entities. In our case, those entities are species. We
are seeking to learn how mammals (more specifically primates) compare to
each other given a group of genes (GPCRs and addiction related).

PAML in particular is the best software for helping us to understand the
potentially significant differences in genes across different mammalian
species. From there, we can decide which genes we will further study in
cell culture projects or assays.

Examples

In the beginning stages of our project, we tested various phylogenetic
programs to see which worked well for us.

In this module, we include classes and ways to use PAML, Phylip, PhyML,
IQTREE, and Biopython’s Bio.Phylo class.

Example using PhyML and RelaxPhylip

from OrthoEvol.Orthologs import Phylogenetics

Find out what subclasses are available for use
dir(Phylogenetics)

Out[1]:
['AlignIO',
 'ETE3PAML',
 'IQTree',
 'IQTreeCommandline',
 'OrthologsWarning',
 'PAML',
 'PhyML',
 'Phylip',
 'PhyloTree',
 'RelaxPhylip',
 'TreeViz',
 '__all__',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__path__',
 '__spec__',
 'warnings']

Now you can import a class you want to utilize
from OrthoEvol.Orthologs.Phylogenetics import PhyML, RelaxPhylip

RelaxPhylip("HTR1A_aligned.fasta", "HTR1A_aligned.phy")

Generate a maximum likelihood tree from the phylip formatted alignment file.
PhyML("HTR1A_aligned.phy")

Align Documentation

This module aids in aligning multiple sequence fasta files, and in
particular, it has been designed to optimize aligning orthologous
mammalian sequences. We’ve found that clustal
omega [http://www.ebi.ac.uk/Tools/msa/clustalo/help/faq.html] is best
for the sample size we presently use which includes about 66 sequences
per mutli fasta file.

In the process of aligning our sequences, we also researched methods for
better curating those sequences. We’ve added `Guidance2 <>`__ and
`Pal2Nal <>`__ command line wrappers to help us to remove poor sequences
(guidance) and to prep sequences better for PAML analysis (pal2nal).

Usage

Clustal Omega is mainly used to align our the cds sequences. It’s best
to use clustal omega with amino acid sequences.

Code Example

This is a quick example to use the `ClustalO <>`__ class.

from OrthoEvol.Orthologs.Align import ClustalO

gene_list = ['HTR1A', 'CCR5', 'DRD4']

for gene in gene_list:
 ClustalO(gene + "_multifasta.ffn", gene + "_aligned.fasta", gene + ".log")

	exclamation:	Notes

It’s important to not that the default parameters are as follows:
seqtype="PROTEIN", infmt="fasta", outfmt="fasta"

Genbank Documentation

Retrieve genbank files and extract specific features sucha as cds or
aa. Also, write the features to text files.

Usage

The main classes are GenBank and GenBankMana. GenBankMana helps
to incorporate the ftp class.

Code Examples

Perform Genbank Feature Extraction

Tests

Describe and show how to run the tests with code examples.

OtherUtils Documentation

The functions and classes within this submodule aren’t including in the
other Tools submodules due to the fact they are hard to categorize.

What are the other utils

The other utils are formatlist, splitlist, makedirectory,
PackageVersion, FunctionRepeater, and csvtolist.

Examples

Convert a column of a csv file to a list

Pandoc Documentation

Use the docx2md.sh script to convert .docx files to .md (markdown)
format. The shell script uses pandoc to convert the files.

Dependencies

Pandoc [http://johnmacfarlane.net/pandoc/] must be installed.

Setup

On Linux/Debian

Make the script executable. Then run it. 1. chmod +x docx2md.sh 2.
./docx2md.sh

Examples

In addition to a .sh/bash script to use with Pandoc, we’ve used
`pypandoc <>`__ to create a class that allows the conversion of
documents.

Convert markdown to docx

from OrthoEvol.Tools import PandocConverter
PandocConverter(infile='README.md', outfmt='docx', outfile='README.docx')

Get a list of input formats

from OrthoEvol.Tools import PandocConverter
PandocConverter.input_formats

Out[17]:
['commonmark',
 'docbook',
 'docx',
 'epub',
 'haddock',
 'html',
 'json',
 'latex',
 'markdown',
 'markdown_github',
 'markdown_mmd',
 'markdown_phpextra',
 'markdown_strict',
 'mediawiki',
 'native',
 'odt',
 'opml',
 'org',
 'rst',
 't2t',
 'textile',
 'twiki']

Get a list of output formats

from OrthoEvol.Tools import PandocConverter
PandocConverter.output_formats

Out[18]:
['asciidoc',
 'beamer',
 'commonmark',
 'context',
 'docbook',
 'docbook5',
 'docx',
 'dokuwiki',
 'dzslides',
 'epub',
 'epub3',
 'fb2',
 'haddock',
 'html',
 'html5',
 'icml',
 'json',
 'latex',
 'man',
 'markdown',
 'markdown_github',
 'markdown_mmd',
 'markdown_phpextra',
 'markdown_strict',
 'mediawiki',
 'native',
 'odt',
 'opendocument',
 'opml',
 'org',
 'plain',
 'revealjs',
 'rst',
 'rtf',
 's5',
 'slideous',
 'slidy',
 'tei',
 'texinfo',
 'textile',
 'zimwiki']

MyGene Documentation

Our MyGene class is a wrapper around BioThings’ MyGene.info.
MyGene.info [http://mygene.info] provides simple-to-use REST web
services to query/retrieve gene annotation data.

Currently, our MyGene class does not allow any additional fields or
species (than the default), but more features will be added in the near
future.

Examples

Use Blast Master Accession File output with MyGene

from OrthoEvol.Manager.config import templates

infile = pkg_resources.resource_filename(templates.__name__, 'test_blast.csv')

MyGene(infile=infile, outfile='mygene_output.csv')

Blast Documentation

This module uses NCBI’s standalone
blast [https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download]
to generate blastn results. The results are parsed for the best hit,
which are used to get accession numbers.

What is BLAST?

Per NCBI, the Basic Local Alignment Search Tool
(BLAST) [https://blast.ncbi.nlm.nih.gov/Blast.cgi] finds regions of
local similarity between sequences. The program compares nucleotide or
protein sequences to sequence databases and calculates the statistical
significance of matches. BLAST can be used to infer functional and
evolutionary relationships between sequences as well as help identify
members of gene families.

We use NCBI’s blastn task to generate a best hit in order to infer
orthology which is under the umbrella of comparative genetics/genomics
Comparative genetics/genomics is a field of biological research in which
the genome sequences of different species — human, mouse, and a wide
variety of other organisms from bacteria to chimpanzees — are compared.

Using this package, we compared these
genes [http://www.guidetopharmacology.org/targets.jsp] of interest
across a group of
species [ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/].

How do we configure and run blast?

Running blast is the most complex aspect of this package, but we’ve
found a way to simplify the automation of blasting while also
limiting blast searches by organism.

Before you use this function, you need NCBI Blast+ must be installed
and in your path. Download the latest standalone blast executables from
here [ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/].

The story of 2 blast methods - Seqids vs Windowmasking

Seqids

Windowmasking

We have perfected the method of using a windowmasker file for each
taxonomy id of the organisms that we are analyzing. The blastn
executable can filter a query sequence using the windowmasker data
files. This option can be used to mask interspersed repeats that may
lead to spurious matches. The windowmasker data files should be
downloaded from the NCBI FTP site.

For information on how to set up a window masker database, read our
setup tutorial.

On a command line, the windowmasker function would look as such:

blastn -query input -db database -window_masker_taxid 9606 -out results.txt

That requires you to have a WINDOW_MASKER_PATH variable in your
environment variables.

In python:

In addition to using windowmasker data files, we also use a specifically
formatted accession file with our headers as Tier, Gene,
Organism to store blast output and input. This allows for
distinguishing genes by families or features. The Tier header can be
omitted, but the other headers are requirements.

The Accession numbers are stored in a .csv file. The following table is
an example of how we format our blast input file.

	Tier
	Gene
	Homo_sapiens
	Macaca_mulatta
	Mus_musculus
	Rattus_norvegicus

	1
	ADRA1A
	NM_000680.3
	
	
	

	2
	ADRA1B
	NM_000679.3
	
	
	

	3
	ADRA1D
	NM_000678.3
	
	
	

	4
	ADRA2A
	NM_000681.3
	
	
	

	Good
	ADRA2B
	NM_000682.6
	
	
	

	Bad
	CHRM1
	NM_000738.2
	
	
	

	Ugly
	CHRM2
	NM_000739.2
	
	
	

	Other
	CHRM3
	NM_000740.2
	
	
	

	GPCR
	CHRM5
	NM_012125.3
	
	
	

	Isoforms
	CNR1
	NM_016083.4
	
	
	

The .csv file requires some manual configuration, and, while tedious, it
is also currently fundamental for the API.

Below we have defined the headers:

	Tier: The target genes need a ranking or categorization based on
the experiment. These can be user defined or a preset tier system can
be used. In the future the different tiers will allow the user to
control the order that each gene is processed.

	Gene: The genes are HGNC aliases for the target genes of
interest. In the future we will be able to process the HGNC .csv file
to further automate the creation of this template file.

	Query: The query organism is placed into the 3rd column of the
.csv file. In the example Homo sapiens is used. Each taxa is a string
in the format of “Genus_species”. The query organism also has to
have accession numbers for each gene. It is therefore highly
important to pick a well annotated species for accurate analysis.

Examples

The main class to use is OrthoBlastN in order to run blast. In order
to run OrthoBlastN without using our database management features,
BLASTDB and WINDOW_MASKER_PATH paths must be set.

Performing Blast & Post-Blast Analysis

from OrthoEvol.Orthologs.Blast import OrthoBlastN
import os

Create a blast configuration dictionary
blast_cfg = {
 "taxon_file": None,
 "go_list": None,
 "post_blast": True,
 "template": None,
 "save_data": True,
 "copy_from_package": True,
 "MAF": 'MAFV3.2.csv'
 }

path = os.getcwd()
myblast = OrthoBlastN(proj_mana=None, project="blast-test", project_path=path, **blast_config)
myblast.blast_config(myblast.blast_human, 'Homo_sapiens', auto_start=True)

Making the API available with Accession data

TODO: This is unfinished.

from OrthoEvol.Orthologs.CompGenetics import CompGenAnalysis

IQTree Documentation

IQTree is a fast and effective stochastic algorithm to infer
phylogenetic trees by maximum likelihood.

Example

Consensus Tree

Default Parameters

SGE Documentation

Collection of tools for using PBS, a job scheduler for high-performance
computing environments on SGE. The command is usually qsub <options>
on most systems.

Usage & Examples

The main class under sge is SGEJob, which provides functionality to
use the job sceduling system on a high performance computing (HPC)
cluster.

The Qstat class is also available for parsing the output of the
qstat command.

The class currently provides a template, temp.pbs, file to be
modified and used when submitting a job as well as default job
attributes.

Using SGEJob with Multiprocess

Submitting multiple jobs

Get Job Info

Running a simple job

from OrthoEvol.Tools.sge import SGEJob

myjob = SGEJob(email_address='shutchins2@umc.edu')

code = "test.py"
myjob.submit_pycode(code)

Software Dependencies

Ensure that you have at least pbs version 14.1.0

Thanks

Thanks to [@jfeala](https://github.com/jfeala) for his work on Luigi’s
SGEJobTask.

BioSQL Documentation

For this package, we used Biopython to help us interface with BioSQL

More documentation can be found
here [http://biopython.org/DIST/docs/biosql/python_biosql_basic.html].

Examples

PhyML Documentation

PhyML is a phylogeny software based on the maximum-likelihood principle.
Early PhyML versions used a fast algorithm performing Nearest Neighbor
Interchanges (NNIs) to improve a reasonable starting tree topology.

Example

Consensus Tree

Default Parameters

send2server

send2server (s2s) makes it easier to send files from server to server.
It’s best to have a public key set up so that sending the files doesn’t
require a password.

To learn more about setting up public ssh keys, go
here [http://tinyurl.com/pccz3pj].

Usage

PyBasher

A user-friendly Bash module for Python.

It was inspired by Alex Couper’s
bash [https://github.com/alexcouper/bash] package.

Background

While learning to use a Linux/Unix shell with Python, I realized that
Python’s native shell modules are often clunkier and more difficult to
use than simply using the Bash shell. That lead me to start using
os.system although I realized that subprocess.call gave me more
control of standard output. This module/package will seek to simplify a
number of useful bash commands & make them easier to incorporate into
python scripts.

Usage

Place code examples here and other ways to use this project/pipeline.

Parallel Documentation

The parellel module is home to the Multiprocess class which uses
python’s native multiprocessing module. Find more information
here [https://docs.python.org/3.6/library/multiprocessing.html]. It
will soon be home to MPI (Message Passing
Interface) [http://mpi4py.readthedocs.io/en/stable/] which is also a
form of parallel computing.

In order to take advantage of using our supercomputer’s processing
power, we looked into mpi and multiprocessing. Both were found to be
useful.

This is an optional class in our pipeline, but if you’re using AWS or
Google’s supercomputing, then you may find it useful unless you’re
interested in or using clustering or SGE (Sun Grid Engine). We have a
sge
module [https://github.com/datasnakes/OrthoEvolution/tree/master/OrthoEvol/Tools/sge]
for that.

Examples

A Random Example

from OrthoEvol.Tools import Multiprocess

def printwords(word):
 print(word)

words = ['bae', 'luh', 'cuh']

if __name__ == '__main__':
 mp = Multiprocess()
 mp.map2function(printwords, words)

mpi module

The mpi module will allow us to make use of the MCSR’s PBS script
functionality via the mpi4py package. ## Description

Originally this was used for the FTP downloads. It is currently under
development for project wide use. The following need to be added: - []
Start function - [] Function to split things into a nested list - []
Function to create JSON file for each process - [] Remove functions
from the ftp2db script and put here - [] Add parameters for this module
- [] MP script - [] Script type (language) - [] Add a script for
calling these types (e.g. python3 script.py; R app.R) - [] Number of
processes - [] Nested list to be split - [] Flag for keeping default
PBS(.sh) script or generating a custom one - [] Look into the other
multiprocessing thing I linked on SLACK

Usage

Usage will be more concisely described after this module is update.

A PBS script is called like this:

$ qsub UPLOAD.sh

Here is what the current PBS script looks like:

This module is strictly a python driven module. mpi4py is used like
so:

from mpi4py import MPI

Get child process information
comm = MPI.COMM_WORLD

The rank is unique to each process.
For 8 parallel processes there will be a rank 0-7
rank = comm.Get_rank()
Currently unused variable in my scripts
size = comm.Get_size()
machine = platform.node()

If another type of programming language is needed then ## Tests

??

slackify

Send updates to Slack about your pipeline’s progression!

You can upload a file, image, or send a message to a slack channel once
you’ve gone through Slack to generate an API
KEY [https://get.slack.help/hc/en-us/articles/215770388-Create-and-regenerate-API-tokens].

The bot you create (if you choose that route) must be invited to the
channel you post from the bot in.

After generating an apikey, it’s best to create a configuration file so
that you can easily keep up with your apikey. Make sure to practice
secure methods. Don’t upload your apikey to github as that is very
insecure. Keep a local copy of your key.

Examples

Import the class and set up the slack handler.

from OrthoEvol.Tools import Slackify

slack = Slackify(slackconfig='path/to/slackconfig.cfg')

Your config file should look as such:

[APIKEYS]
slack = apikeystring

Message a channel and link to a user with <@username> in your message.

message_to_channel = 'Hey, <@username>. This is an update for the current script.'

slack.send_msg(channel='channelname', message=message_to_channel)

Get all users and channels.

slack.list_users() # Returns a list of all users.
slack.list_channels() # Returns a list of channels

Upload a file. The file can be an image, pdf, doc, text, python file, etc.

slack.upload_file()

FTP (File Transfer Protocol) Documentation

The ftp module is geared towards making it easier to interface with
NCBI’s FTP repository [ftp://ftp.ncbi.nlm.nih.gov].

More specifically, we provide a way to easily find and list directories
and their respective contents as well as to download blast databases and
other databases for use with the Orthologs package. We have implemented
database downloading with threading which is the safest way to implement
this cross-platform.

We also provide a parallel module which can be used in conjunction with
the NcbiFTPClient to download files or databases much quicker if
your system can handle that.

If you’re using Linux or a supercomputer and do not want to use
threading to download ftp databases, you can look at `this standalone
script <>`__.

Examples

Blastdb Download Example

This is a simple example of using some of the modules.

from OrthoEvol.Tools.ftp import NcbiFTPClient

ncbiftp = NcbiFTPClient(email='somebody@gmail.com')
ncbiftp.getblastdb(database_name='refseq_rna')

Windowmasker files Download Example

from OrthoEvol.Tools.ftp import NcbiFTPClient
import os

ids = ['9544', '9606']

ncbiftp = NcbiFTPClient(email='somebody@gmail.com')
ncbiftp.getwindowmaskerfiles(taxonomy_ids=ids, download_path=os.getcwd())

Refseq Release Download Example

from OrthoEvol.Tools.ftp import NcbiFTPClient
import os

ncbiftp = NcbiFTPClient(email='somebody@gmail.com')
ncbiftp.getrefseqrelease(taxon_group='vertebrate_mammalian', seqtype='rna', seqformat='gbff', download_path=os.getcwd())

List all directories in a path

ncbiftp.listdirectories(path='/blast/db/')
Out[54]: ['FASTA', 'cloud']

List all files in a path

ncbiftp.listfiles(path='/blast/db/')

List all files in the current working directory

The default path is ftp.pwd() or the current directory
ncbiftp.listfiles()

	exclamation:	Notes

Check the NCBI README for information about the
preformatted blast databases that we use and suggest you use. We also
provide an easy way to download them which is referenced in the above
example.

LogIt Documentation

Use the LogIt class to make logging very simple. This short and sweet
class wraps around logzero [https://github.com/metachris/logzero]
which allows color coded logging. We created our own default logger with
a default dateformat, logformat, and logging level (default is debug).

	Import the LogIt class and create a variable. ex: logit = LogIt()

	Create your logger. ex:
blastn = logit.default('blastn', 'blastn.log')

	Start logging. ex:
blastn.error('Your refseq accession was not found')

Multiple loggers can exist for the same logfile and multiple loggers can
be set up for one script which is shown in the example below.

Example

Use logging with ETE3PAML

from OrthoEvol.Tools import LogIt
from OrthoEvol.Orthologs.Phylogenetics import ETE3PAML

Set up your loggers
logit = LogIt()

Log to one file
logfile = 'align2paml.log'

align, paml = logit.default('alignlog', logfile), logit.default('pamllog', logfile)

Start logging
align.info('hi')
paml.info('muah')

Shutdown the loggers and delete the logfile
logit.deletelog(logfile=logfile)

Shutdown logging without deleting the logfile
logit.shutdown()

Zipper Documentation

Zip/compress a folder.

Examples

PAML Documentation

Why ETE? ETE is python package for building, comparing, annotating,
manipulating and visualising trees. It provides a comprehensive API and
a collection of command line tools, including utilities to work with the
NCBI taxonomy tree.

Usage

Model Selection

Default Parameters

It’s important to note the default parameters for ETE3PAML are as
follows: model='M1'

ETE3PAML output

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		OrthoEvolution

 		Tutorial

 		Using the Cookies module

 		Overview

 		Examples

 		Using the Manager module

 		Overview

 		Future Direction

 		Examples

 		Using the Orthologs Module

 		Overview

 		Examples

 		Using the Pipeline module

 		Examples

 		Using the Tools module

 		Overview

 		Examples

 		Cookies Documentation

 		Examples

 		Simple Implementation

 		Manager Documentation

 		Why a manager?

 		Examples

 		Utilizing DatabaseManagement to download databases

 		Notes

 		Orthologs Documentation

 		Usage & Examples

 		❗ Software Dependencies

 		Using install.sh on Debian/Ubuntu:

 		Pipeline Documentation

 		Examples

 		Running a Blast Pipeline

 		❗ Software Dependencies

 		Tools Documentation

 		Examples

 		Download NCBI databases with our NCBI FTP Client

 		List all subdirectories in a NCBI FTP Path

 		Utilize multiprocessing to speed up your code

 		Integrate logging in a simple and quick way

 		Additional Documentation

_static/up.png

_static/comment-close.png

